Probability theory

Exercise Sheet 7

Exercise 1 (4 Points)

Let $(\mu_n)_{n\in\mathbb{N}}\subset\mathcal{P}(\mathbb{R})$. Examine if there exists a measure $\mu\in\mathcal{P}(\mathbb{R})$ such that μ_n converges weakly to μ as $n\to\infty$, where

(a) μ_n is the binomial distribution with parameters n and λ/n , $\lambda > 0$, i.e.

$$\mu_n(A) = \sum_{k=0}^n \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} \delta_k(A), \quad A \in \mathcal{B}(\mathbb{R}).$$

(b) μ_n is the the uniform distribution on (-n, n), i.e.

$$\mu_n(\mathrm{d}x) = \mathbb{1}_{(-n,n)} \frac{1}{2n} m(\mathrm{d}x).$$

Exercise 2 (4 Points)

Suppose that $(\mu_n)_{n\in\mathbb{N}}\subset \mathcal{P}(E)$, $\mu\in\mathcal{P}(E)$ admit density functions p_n , p with respect to a (non necessarily finite) measure λ on E. $(d\mu_n=p_nd\lambda)$ and $d\mu=pd\lambda$.)

- (a) Suppose $p_n \to p$ λ -almost surely as $n \to \infty$. Conclude that μ_n converges weakly to μ as $n \to \infty$.
- (b) Find a counterexample showing that the converse in (b) is not true in general.

Exercise 3 (6 Points)

Let μ be a probability measure on \mathbb{R} and let $F(t) := \mu((-\infty, t])$.

- (a) Prove that $\lim_{t\to\infty} F(t) = 0$, $\lim_{t\to\infty} F(t) = 1$, F is monotonically increasing and that F is right-continuous.
- (b) Prove that F has at most countably many point of discontinuity.

What does 'F is continuous at t' means in terms of μ ? Give an example for μ where F is continuous and an example where F is only discontinuous at t = 0.

Exercise 4 (4 Points)

Prepare a talk on Portmanteau's Theorem and the idea of its proof.